The puzzle of ligand binding to Corynebacterium ammoniagenes FAD synthetase.

نویسندگان

  • Susana Frago
  • Adrián Velázquez-Campoy
  • Milagros Medina
چکیده

In bacteria, riboflavin phosphorylation and subsequent conversion of FMN into FAD are carried out by FAD synthetase, a single bifunctional enzyme. Both reactions require ATP and Mg(2+). The N-terminal domain of FAD synthetase appears to be responsible for the adenylyltransferase activity, whereas the C-terminal domain would be in charge of the kinase activity. Binding to Corynebacterium ammoniagenes FAD synthetase of its products and substrates, as well as of several analogues, is analyzed. Binding parameters for adenine nucleotides to each one of the two adenine nucleotide sites are reported. In addition, it is demonstrated for the first time that the enzyme presents two independent flavin sites, each one related with one of the enzymatic activities. The binding parameters of flavins to these sites are also provided. The presence of Mg(2+) and of both adenine nucleotides and flavins cooperatively modulates the interaction parameters for the other ligands. Our data also suggest that during its double catalytic cycle FAD synthetase must suffer conformational changes induced by adenine nucleotide-Mg(2+) or flavin binding. They might include not only rearrangement of the different protein loops but also alternative conformations between domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Key Residues at the Flavin Mononucleotide (FMN):Adenylyltransferase Catalytic Site of the Bifunctional Riboflavin Kinase/Flavin Adenine Dinucleotide (FAD) Synthetase from Corynebacterium ammoniagenes

In mammals and in yeast the conversion of Riboflavin (RF) into flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) is catalysed by the sequential action of two enzymes: an ATP:riboflavin kinase (RFK) and an ATP:FMN adenylyltransferase (FMNAT). However, most prokaryotes depend on a single bifunctional enzyme, FAD synthetase (FADS), which folds into two modules: the C-terminal asso...

متن کامل

S434F in NrdE generates the thermosensitive phenotype of corynebacterium ammoniagenes CH31 and enhances thermolability by increasing the surface hydrophobicity of the NrdE(Ts) protein.

The thermosensitive phenotype of strain CH31, a derivative of Corynebacterium ammoniagenes ATCC 6872, was allocated by cloning, sequencing, and genetic complementation to a single C-->T exchange in the nrdE (nucleotide reduction) gene at nucleotide 1301. Protein modeling indicates the impaired surface hydrophobicity of NrdE(Ts) due to the S434F transition.

متن کامل

Corynebacterium mooreparkense sp. nov. and Corynebacterium casei sp. nov., isolated from the surface of a smear-ripened cheese.

Ten isolates each of two different bacterial species isolated from the surface of a smear-ripened cheese were found to exhibit many characteristics of the genus Corynebacterium. The isolates were Gram-positive, catalase-positive, non-spore-forming rods that did not undergo a rod/coccus transformation when grown on complex media. Chemotaxonomic investigation revealed that the strains belonged un...

متن کامل

The active form of the R2F protein of class Ib ribonucleotide reductase from Corynebacterium ammoniagenes is a diferric protein.

Corynebacterium ammoniagenes contains a ribonucleotide reductase (RNR) of the class Ib type. The small subunit (R2F) of the enzyme has been proposed to contain a manganese center instead of the dinuclear iron center, which in other class I RNRs is adjacent to the essential tyrosyl radical. The nrdF gene of C. ammoniagenes, coding for the R2F component, was cloned in an inducible Escherichia col...

متن کامل

Orotate phosphoribosyltransferase from Corynebacterium ammoniagenes lacking a conserved lysine.

The pyrE gene, encoding orotate phosphoribosyltransferase (OPRTase), was cloned by nested PCR and colony blotting from Corynebacterium ammoniagenes ATCC 6872, which is widely used in nucleotide production. Sequence analysis shows that there is a lack of an important conserved lysine (Lys 73 in Salmonella enterica serovar Typhimurium OPRTase) in the C. ammoniagenes OPRTase. This lysine has been ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 284 11  شماره 

صفحات  -

تاریخ انتشار 2009